3.2.75 \(\int \frac {(a+a \sec (c+d x))^2}{\sqrt {\sec (c+d x)}} \, dx\) [175]

3.2.75.1 Optimal result
3.2.75.2 Mathematica [A] (verified)
3.2.75.3 Rubi [A] (verified)
3.2.75.4 Maple [B] (verified)
3.2.75.5 Fricas [C] (verification not implemented)
3.2.75.6 Sympy [F]
3.2.75.7 Maxima [F]
3.2.75.8 Giac [F]
3.2.75.9 Mupad [F(-1)]

3.2.75.1 Optimal result

Integrand size = 23, antiderivative size = 64 \[ \int \frac {(a+a \sec (c+d x))^2}{\sqrt {\sec (c+d x)}} \, dx=\frac {4 a^2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {2 a^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{d} \]

output
2*a^2*sin(d*x+c)*sec(d*x+c)^(1/2)/d+4*a^2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos 
(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec 
(d*x+c)^(1/2)/d
 
3.2.75.2 Mathematica [A] (verified)

Time = 1.03 (sec) , antiderivative size = 48, normalized size of antiderivative = 0.75 \[ \int \frac {(a+a \sec (c+d x))^2}{\sqrt {\sec (c+d x)}} \, dx=\frac {2 a^2 \sqrt {\sec (c+d x)} \left (2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+\sin (c+d x)\right )}{d} \]

input
Integrate[(a + a*Sec[c + d*x])^2/Sqrt[Sec[c + d*x]],x]
 
output
(2*a^2*Sqrt[Sec[c + d*x]]*(2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] 
+ Sin[c + d*x]))/d
 
3.2.75.3 Rubi [A] (verified)

Time = 0.43 (sec) , antiderivative size = 64, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {3042, 4275, 3042, 4258, 3042, 3120, 4531}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \sec (c+d x)+a)^2}{\sqrt {\sec (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^2}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4275

\(\displaystyle \int \frac {\sec ^2(c+d x) a^2+a^2}{\sqrt {\sec (c+d x)}}dx+2 a^2 \int \sqrt {\sec (c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle 2 a^2 \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx+\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4258

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+2 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+2 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3120

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {4 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}\)

\(\Big \downarrow \) 4531

\(\displaystyle \frac {2 a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}+\frac {4 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}\)

input
Int[(a + a*Sec[c + d*x])^2/Sqrt[Sec[c + d*x]],x]
 
output
(4*a^2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d 
+ (2*a^2*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/d
 

3.2.75.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4275
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_))^2, x_Symbol] :> Simp[2*a*(b/d)   Int[(d*Csc[e + f*x])^(n + 1), x], x] 
 + Int[(d*Csc[e + f*x])^n*(a^2 + b^2*Csc[e + f*x]^2), x] /; FreeQ[{a, b, d, 
 e, f, n}, x]
 

rule 4531
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) 
+ (A_)), x_Symbol] :> Simp[A*Cot[e + f*x]*((b*Csc[e + f*x])^m/(f*m)), x] /; 
 FreeQ[{b, e, f, A, C, m}, x] && EqQ[C*m + A*(m + 1), 0]
 
3.2.75.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(184\) vs. \(2(84)=168\).

Time = 14.96 (sec) , antiderivative size = 185, normalized size of antiderivative = 2.89

method result size
default \(-\frac {4 a^{2} \left (-\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(185\)
parts \(\frac {2 a^{2} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 a^{2} \left (-2 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {4 a^{2} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(456\)

input
int((a+a*sec(d*x+c))^2/sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)
 
output
-4*a^2*(-(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*cos(1/2*d*x+ 
1/2*c)*sin(1/2*d*x+1/2*c)^2+(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/ 
2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(-2*sin(1/2*d*x+1/2* 
c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2 
*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 
3.2.75.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 77, normalized size of antiderivative = 1.20 \[ \int \frac {(a+a \sec (c+d x))^2}{\sqrt {\sec (c+d x)}} \, dx=-\frac {2 \, {\left (i \, \sqrt {2} a^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - i \, \sqrt {2} a^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - \frac {a^{2} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}\right )}}{d} \]

input
integrate((a+a*sec(d*x+c))^2/sec(d*x+c)^(1/2),x, algorithm="fricas")
 
output
-2*(I*sqrt(2)*a^2*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c) 
) - I*sqrt(2)*a^2*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c) 
) - a^2*sin(d*x + c)/sqrt(cos(d*x + c)))/d
 
3.2.75.6 Sympy [F]

\[ \int \frac {(a+a \sec (c+d x))^2}{\sqrt {\sec (c+d x)}} \, dx=a^{2} \left (\int \frac {1}{\sqrt {\sec {\left (c + d x \right )}}}\, dx + \int 2 \sqrt {\sec {\left (c + d x \right )}}\, dx + \int \sec ^{\frac {3}{2}}{\left (c + d x \right )}\, dx\right ) \]

input
integrate((a+a*sec(d*x+c))**2/sec(d*x+c)**(1/2),x)
 
output
a**2*(Integral(1/sqrt(sec(c + d*x)), x) + Integral(2*sqrt(sec(c + d*x)), x 
) + Integral(sec(c + d*x)**(3/2), x))
 
3.2.75.7 Maxima [F]

\[ \int \frac {(a+a \sec (c+d x))^2}{\sqrt {\sec (c+d x)}} \, dx=\int { \frac {{\left (a \sec \left (d x + c\right ) + a\right )}^{2}}{\sqrt {\sec \left (d x + c\right )}} \,d x } \]

input
integrate((a+a*sec(d*x+c))^2/sec(d*x+c)^(1/2),x, algorithm="maxima")
 
output
integrate((a*sec(d*x + c) + a)^2/sqrt(sec(d*x + c)), x)
 
3.2.75.8 Giac [F]

\[ \int \frac {(a+a \sec (c+d x))^2}{\sqrt {\sec (c+d x)}} \, dx=\int { \frac {{\left (a \sec \left (d x + c\right ) + a\right )}^{2}}{\sqrt {\sec \left (d x + c\right )}} \,d x } \]

input
integrate((a+a*sec(d*x+c))^2/sec(d*x+c)^(1/2),x, algorithm="giac")
 
output
integrate((a*sec(d*x + c) + a)^2/sqrt(sec(d*x + c)), x)
 
3.2.75.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x))^2}{\sqrt {\sec (c+d x)}} \, dx=\int \frac {{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^2}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}} \,d x \]

input
int((a + a/cos(c + d*x))^2/(1/cos(c + d*x))^(1/2),x)
 
output
int((a + a/cos(c + d*x))^2/(1/cos(c + d*x))^(1/2), x)